European Sero-Epidemiology Network (ESEN2):

The comparative sero-epidemiology of Hepatitis A and B

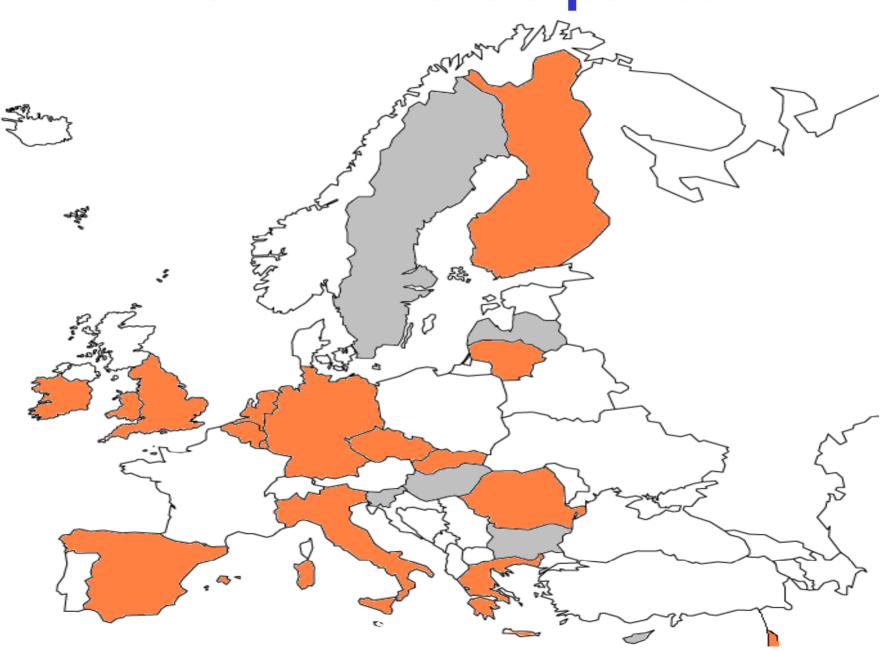
Nardone A¹, Anastassopoulou C.G², Hatzakis A², Andrews N¹, Gelb D¹ & Kafatos G¹ on behalf of the ESEN2 Group

- 1. Health Protection Agency, Communicable Disease Surveillance Centre, London, UK.
- 2. National Retrovirus Reference Centre, Dept. of Hygiene & Epidemiology, Athens University Medical School, Greece.

EUROHEPNET, Malta, April, 2005 DRAFT RESULTS

ESEN2 Group

- BELGIUM: L de Cock, P van Damme, H Theeten, R Vranckx.
- **CZECH REPUBLIC:** B Kriz, V Nemecek.
- ENGLAND & WALES: N Andrews, D Gelb, G Kafatos, E Miller.
- FINLAND: I Davidkin, S Jokinen.
- **GERMANY**: W Hellenbrand, D Radun, W Thierfelder.
- **GREECE**: C Anastassopoulou, A Hatzakis.
- **IRELAND**: M Carton, S Dooley, L Jones, D O'Flannagan, L Thornton. **ISRAEL**: D Cohen, N Rimon.
- ITALY: F Ansaldi, B Bruzzone, P Crovari, G Icardi, C Rota.
- LITHUANIA: V Bakasenas, A Griskevicius.
- LUXEMBOURG: J Mossong, F Schneider.
- MALTA: A Amato-Gauci, C Barbara.
- **NETHERLANDS:** G Berbers, H Boot, H de Melker.
- **ROMANIA:** D Butur, A Pistol.
- SLOVAKIA: M Slacikova, Z Sobotova.
- **SPAIN:** V Martinez de Aragon, F de Ory.
 - ESEN2 was funded by DG Research, European Union (2000-00542)


ESEN2: aims and objectives

- to coordinate the serological surveillance of vaccinepreventable disease in Europe:
 - to establish comparable methodologies for serosurveillance by standardising laboratory and epidemiological methods
 - to determine standardised age-specific antibody prevalence to 8 vaccine-preventable diseases
 - to identify strengths and weaknesses of existing vaccination programmes
 - design of optimal vaccine programmes
 - monitor progress towards disease control target

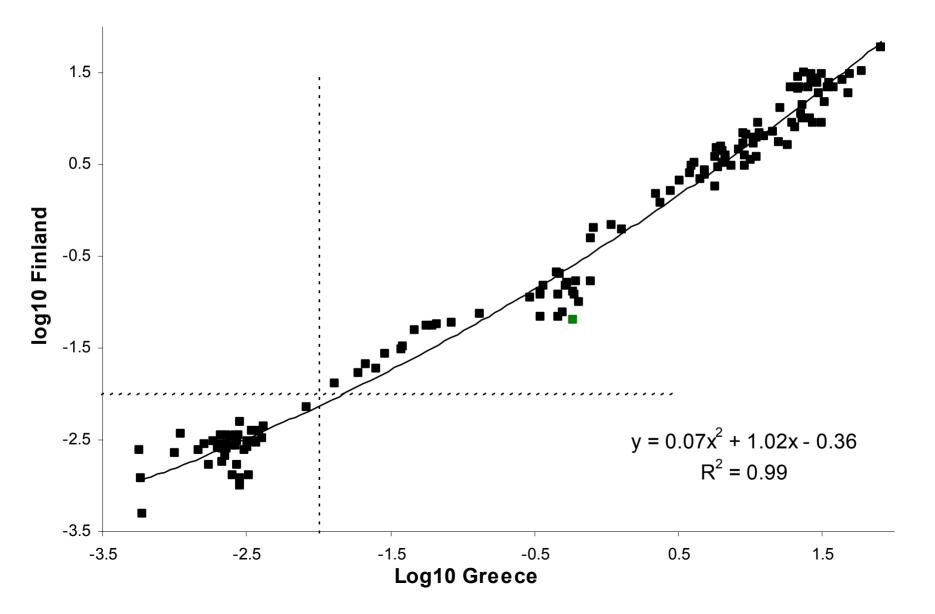
ESEN2: infections investigated

- measles, mumps and rubella (MMR)
- diphtheria
- ➢ pertussis
- varicella-zoster virus (VZV)
- hepatitis A and hepatitis B (HAV/HBV)

ESEN2: Participants

Methods

- Assay standardisation
 - different assays can give different results
 - participant countries can use usual assay
 - international comparisons of sero-epidemiology


Main serum bank collection and testing

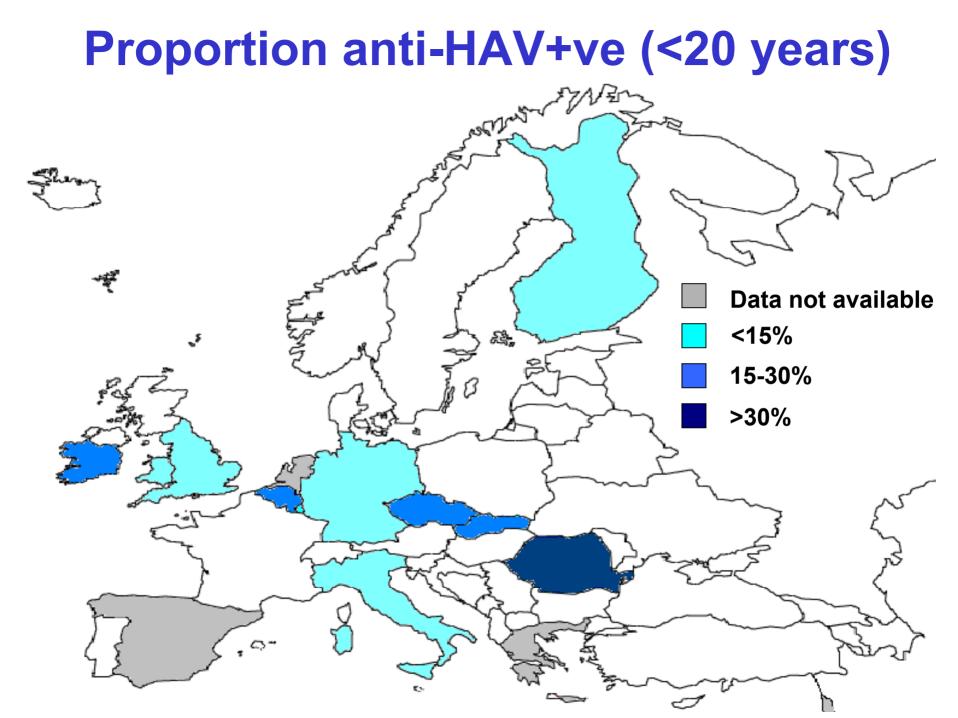
- collection of either residual sera, community sampling or combination
- minimum numbers in age groups
- geographically representative sera collection
- > Organisational analysis
 - questionnaire collecting information on:
 - vaccine policies (current and past)
 - reported incidence of disease

Assay standardisation

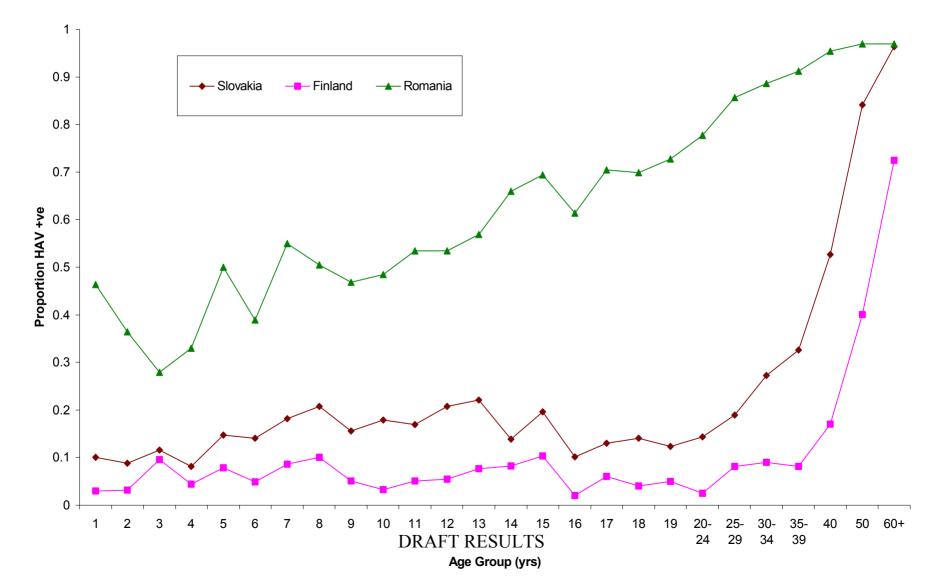
- ➢ reference centre for HAV and HBV
 - Hellenic Centre for Infectious Disease Control (HCAS), Athens, Greece
- development and distribution of standardisation panels
 - each panel includes negative, low positive and positive sera
- reference panel test x2 by participant laboratory
 - 1st test to evaluate assay
 - 2nd test ¹/₂ through testing main serum bank
- development of standardisation equations
 - plot of laboratory results against reference centre
 - application of reference centre's cut-offs

HAV Standardisation, Finland

National Serum Banks


	Type Collection	Year Collected (Tested)	Age Range	Number Tested
Belgium*	residual	2002 (02)	1-60+	3374
Czech	population	2001 (01)	1-60+	2644
Finland	residual	1998 (03)	1-60+	3165
Germany	population	1998 (98)	17-60+	6748
Ireland	residual	2003 (04)	1-60+	2535
Italy	residual	1996 (04)	1-60+	3500
Lithuania	residual	2003 (04)	1-29	2356
Luxembourg	population	2000 (01)	4-60+	2079
Malta	residual	2003 (04)	1-60+	1960
Netherlands	population	1995 (98)	1-60+	6900
Romania#	residual	2002 (04)	1-60+	2800
Slovakia	population	2002 (04)	1-60+	3600
UK	residual	1996 (00)	1-60+	4190

DRAFT RESULTS


*Only <20 years tested for HBV markers #1258 samples tested for HBV

Vaccination Policies for Hepatitis A and B

HA	V Vaccination	HB	V Vaccina	ation
	Туре	Туре	Year	Catch-up
Belgium	Targeted	Infant	1999	11-12
Germany	"	"	1995	9-17
Italy	"	"	1991	12
Luxembourg	"	"	1996	12
Malta	"	"	2003	9-10
Romania	"	"	1995	9
Slovakia	"	"	1998	12
Spain	"	"	2001	14
Czech Republi	С "	"	2001	12
England & Wal	es "	Targeted	-	-
Finland	"	"	-	-
Ireland	II DRAFT	" RESULTS	-	-
Netherlands	URAL I	"	-	-

Example HAV sero-profiles from low, medium and high prevalence countries

Conclusions Hepatitis A

HAV sero-epidemiology in Europe characterised by:

- low sero-prevalence HAV in younger population (low current transmission)
- high adult sero-prevalence indicative of historical transmission

Some variation in HAV serology across Europe

- widespread transmission in Romania
- appears to be no north-south gradient in transmission

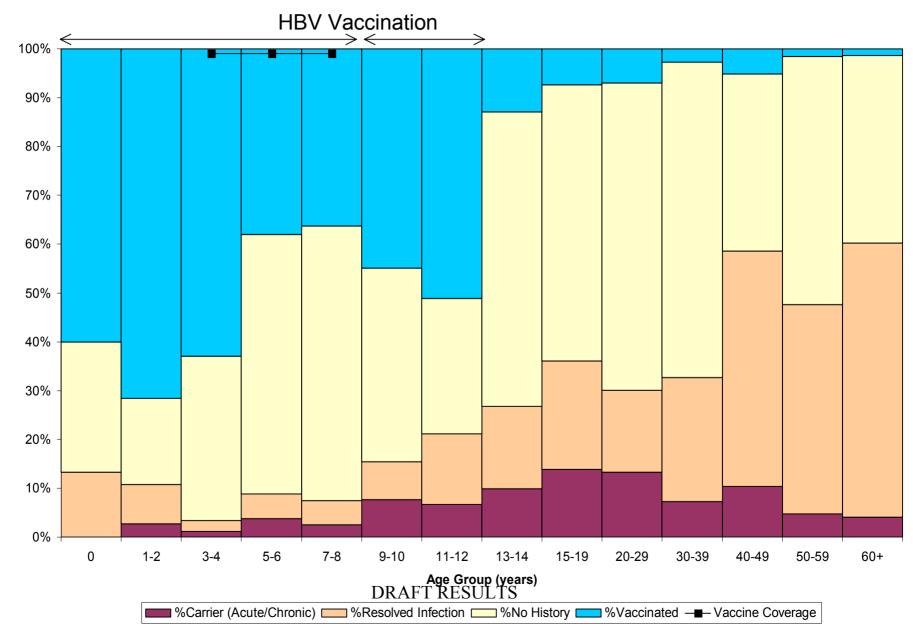
Implications for HAV vaccination programmes

- HAV vaccination policies targeted at-risk groups appears appropriate in most countries
- in Romania mass HAV vaccination to be considered

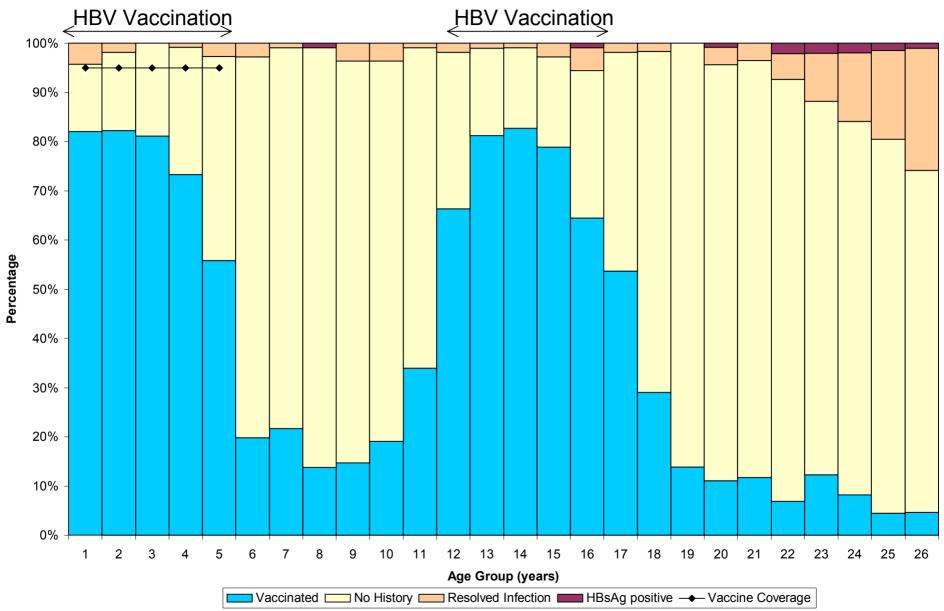
HBV testing algorithms by country

All samples tested:

Country	anti-HBs	anti-HBc
Belgium	+	+
Italy	+	+
Germany	+	+
Slovakia	+	+
Romania	+	+
Czech Republic	+	+
Finland	-	+
Ireland	-	+
Netherlands	-	+


All countries tested anti-HBc samples for HBsAg

Percentage anti-HBVcore +ve by age


Age Groups			
Country	<20 yrs	20-49 yrs	50+ yrs
Belgium	2.2%	-	-
Ireland	1.0%	2.3%	2.7%
Netherlands	0.5%	2.2%	3.0%
Finland	2.4%	4.5%	5.0%
Germany	1.6%	4.2%	8.9%
Czech Republic	0.8%	2.9%	11.4%
Slovakia	6.6%	16.0%	19.5%
Italy	2.2%	8.5%	22.6%
Romania	20.6% DRAFT RESU	36.2%	54.1%

Hepatitis B Surface Antigen		
	Number	Percentage
Country	HBsAg+ve	Population (Total)
Belgium	13	0.9% (1528)
Czech Republi	c 9	0.3% (2644)
Finland	7	0.2% (3165)
Ireland	2	0.1% (2535)
Italy	21	0.6% (3574)
Slovakia	21	0.6% (3624)
Netherlands	10	0.1% (6924)
Romania	DRAFT RESULTS 99	7.7% (1258)

Romania (2002)

Italy (1996)

Conclusions Hepatitis B

Sero-epidemiology Hepatitis B:

- low prevalence past infection in younger population(except Romania)
- higher prevalence past infection older populations
- appears to be north-south gradient in levels past infection
- low endemicitiy HBsAg carriage rates (<1%) except Romania (borderline high endemicity)

Inclusion HBV in infant immunisation (WHO)

- 3 countries without universal infant HBV vaccination
 - low prevalence of past infection HBV and carriage HBsAg
- 5 countries with universal infant HBV vaccination
 - protection in targeted populations
 - discrepancy with reported coverage

Conclusions

Importance serological surveys

- evaluate vaccine campaigns
 - –impact of vaccination programme on levels infections
 –protection in population
- identify appropriate control measures
- better understanding epidemiology disease

Coordinated serological surveillance in Europe

- monitor progress towards disease control targets
- coherence in disease control in Europe

DRAFT RESULTS